问答题
计算题
假设股票现在的价格为100元,不支付股利,以3个月为一期,3个月内股价可能上涨到原来的1.3倍,也可能下降到原来的0.8倍,无风险利率为12%(连续复利)。试求9个月后到期的执行价格为110元的欧式看涨期权的价格。
【参考答案】
先计算风险中性概率:
P.e^0.12×0.25-0.8/1.2-0.8=0.5761即每一个小阶段股价上升的......
(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)
点击查看答案
相关考题
-
问答题
假设股票现在的价格为100元,不支付股利,以3个月为一期,3个月内股价可能上涨到原来的1.2倍,也可能下降到原来的0.8倍,无风险利率为12%(连续复利)。试求6个月后到期的执行价格为110元的美式看跌期权的价格。 -
问答题
某不支付股利的美式股票看涨期权,其执行价格为30美元,到期期限为4个月,期权价格为4.2美元。若股票现在的市场价格为28美元,按连续复利计算的无风险利率为6%,试确定相同标的股票、执行价格为30美元、到期期限为4个月的美式看跌期权的价格区间。 -
问答题
如果某公司股票现在的市场价格为32美元,执行价格为30美元的该公司美式股票看涨期权的价格为5.60美元,该期权的有效期还有4个月。同时,市场预期该公司将会在2个月后支付每股1.5美元的股利。假定按连续复利计算的无风险利率为12%(年利率)。要使得市场中不存在无风险套利机会,则该美式看涨期权的价格下限是多少?
